SISTEM PAKAR

Pada saat ini penggunaan teknologi perangkat mobile telah berkembang pesat dan memasyarakat. Sebagian besar masyarakat menggunakannya tidak hanya untuk kepentingan berkomunikasi saja, tetapi juga untuk mendapatkan informasi secara cepat dan efisien dengan aplikasi berorientasi internet melalui teknologi WAP. Perkembangan teknologi Kecerdasan Buatan yang terjadi telah memungkinkan Sistem Pakar untuk diaplikasikan penggunaannya dalam perangkat mobile dengan WML dan PHP.

Salah satunya dalam pemberian informasi mengenai berbagai masalah kesehatan, terutama masalah kesehatan paru anak. Metode sistem pakar yang digunakan adalah forward dan backward chaining dengan pembuatan tree dari data-data penunjang. Dengan fasilitas yang diberikan untuk user dan administrator, memungkinkan baik user maupun administrator untuk menggunakan sistem ini sesuai kebutuhannya masing-masing. User diberi kemudahan dalam mengetahui informasi berbagai jenis penyakit paru anak dengan gejala-gejala klinisnya, informasi rumah sakit paru di beberapa daerah serta konsultasi layaknya dengan seorang dokter paru anak melalui beberapa pertanyaan yang harus dijawab user untuk mengetahui hasil diagnosanya.

Sedangkan administrator dimudahkan dalam memanajemen sistem, baik proses tambah, maupun update data terbaru. Tugas akhir ini diharapkan mampu memberikan informasi segala hal yang berhubungan dengan masalah kesehatan paru anak secara cepat dan efisien secara timbal baik antara user dan sistem tetapi tetap optimal meski dalam small device.

Secara umum, sistem pakar (expert system) adalah sistem yang berusaha mengadopsi pengetahuan manusia ke komputer, agar komputer dapat menyelesaikan masalah seperti yang biasa dilakukan oleh para ahli/ pakar. Dengan sistem pakar ini, orang awam pun dapat menyelesaikan masalahnya atau hanya sekedar mencari suatu informasi berkualitas yang sebenarnya hanya dapat diperoleh dengan bantuan para ahli di bidangnya.

Sistem pakar ini juga akan dapat membantu aktivitas para pakar sebagai asisten yang berpengalaman dan mempunyai asisten yang berpengalaman dan mempunyai pengetahuan yang dibutuhkan. Dalam penyusunannya, sistem pakar mengkombinasikan kaidah-kaidah penarikan kesimpulan (inference rules) dengan basis pengetahuan tertentu yang diberikan oleh satu atau lebih pakar dalam bidang tertentu. Kombinasi dari kedua hal tersebut disimpan dalam komputer, yang selanjutnya digunakan dalam proses pengambilan keputusan untuk penyelesaian masalah tertentu.

Sistem pakar merupakan sebuah sistem berbasis komputer yang menggunakan pengetahuan, fakta dan teknik penalaran yang dimiliki manusia sebagai pakar yang tersimpan di dalam komputer, dan digunakan untuk menyelesaikan masalah yang lazimnya memerlukan pakar tertentu (Martin dan Oxman, 1998).

Sistem pakar yang baik dapat menyelesaikan masalah dengan
lebih sempurna, sebanding dengan seorang pakar yang mempunyai pengetahuan dalam bidang tertentu.

Sistem pakar adalah program “artificial inteligence” (”kecerdasan buatan”) yang menggabungkan basis pengetahuan dengan mesin inferensi. Ini merupakan bagian software spesialisasi tingkat tinggi atau bahasa pemrograman tingkat tinggi (High level Language), yang berusaha menduplikasi fungsi seorang pakar dalam satu bidang keahlian tertentu. Program ini bertindak sebagai konsultan yang cerdas atau penasihat dalam suatu lingkungan keahlian tertentu, sebagai hasil himpunan pengetahuan yang telah dikumpulkan dari beberapa orang pakar.

Sistem pakar dengan desain yang benar dan sejumlah komponen yang saling bekerja sama untuk membentuk suatu kesatuan integrasi, sistem pakar dapat dijadikan alat untuk menunjang aktivitasnya yaitu sebagai asisten
yang berpengalaman.

Beberapa definisi tentang sistem pakar :

  • Menurut Durkin: Sistem pakar adalah suatu program komputer yang dirancang untuk memodelkan kemampuan penyelesaian masalah yang dilakukan oleh seorang pakar.
  • Menurut Ignizio: Sistem pakar adalah suatu model dan prosedur yang berkaitan, dalam suatu domain tertentu, yang mana tingkat keahliannya dapat dibandingkan dengan keahlian seorang pakar.
  • Menurut Giarratano dan Riley: Sistem pakar adalah suatu sistem komputer yang bisa menyamai atau meniru kemampuan seorang pakar.
  • Sistem pakar yang pertama kali muncul adalah General purpose Problem Solver (GPS) dikembangkan oleh Newel Dan Simon.

Contoh – contoh sistem pakar:

  • MYCIN Berguna untuk mendiagnosa penyakit
  • DENDRAL Mengidentifikasi struktur molekular campuran yang tak dikenal
  • XCON & XSEL Membantu konfigurasi sistem komputer besar.
  • SOPHIE Analisis sirkit elektronik
  • Prospektor Digunakan didalam geologi untuk membantu mencari dan menemukan deposit
  • FOLIO Membantu memberikan keputusan bagi seorang manajer dalam hal stok broker dan investasi
  • DELTA Pemeliharaan lokomotif listrik disel.

Kategori dan Area Permasalahan Sistem Pakar:

  • Interprestasi, adalah membuat kesimpulan atau deskripsi dari sekumpulan data mentah.
  • Prediksi, adalah memproyeksikan akibat-akibat yang dimungkinkan dari situasi-situasi tertentu.
  • Diagnosis, adalah menentukan sebab malfungsi dalam situasi yang
    didasarkan pada gejala-gejala yang teramati.
  • Desain, adalah menentukan konfigurasi komponen-komponen sistem  yang  cocok  dengan tujuan-tujuan kinerja tertentu yang memenuhi kendala-kendala tertentu.
  • Perencanaan, adalah merencanakan serangkaian tindakan yang dapat mencapai sejumlah tujuan dengan kondisi awal tertentu.
  • Debugging dan Repair, adalah menentukan dan menginterpresentasikan cara-cara untuk mengatasi malfungsi.
  • Instruksi, adalah mendeteksi  dan  mengoreksi  defisiensi dalam                        pemahaman domain subyek.
  • Pengendalian, adalah mengatur tingkah laku suatu lingkungan yang
    kompleks.
  • Selection, adalah mengidentifikasi pilihan terbaik dari sekumpulan
    kemungkinan.
  • Simulation, adalah pemodelan interaksi antara komponen-komponen sistem.
  • Monitoring, adalah membandingkan hasil pengamatan dengan kondisi yang diharapkan.

Tujuan sistem pakar adalah untuk mentransfer kepakaran yang
dimiliki seorang pakar kedalam komputer dan kemudian dapat digunakan oleh orang lain yang bukan pakar.

Kelebihan sistem pakar:

  • Orang awam bisa menggunakannya
  • Melestarikan keahlian seorang pakar
  • Mampu beroperasi dalam lingkungan yang berbahaya
  • Kemampuan dalam mengakses pengetahuan
  • Bisa berkerja dalam informasi yang tidak lengkap
  • Media pelengkap dalam penelitian
  • Menghemat waktu dalam mengambil suatu keputusan
  • Proses secara otomatis
  • Keahlian sama dengan seorang pakar
  • Produktifitas

Kekurangan sistem pakar

  • Biaya yang sangat mahal membuat dan memeliharanya
  • Sulit di kembangkan karena keterbatasan keahlian dan ketersediaan pakar
  • Sistem pakar tidak 100% bernilai benar

Jenis - Jenis Pengetahuan yang dimiliki Seorang Pakar:

  • Teori-teori dari permasalahan
  • Aturan dan prosedur yang mengacu pada area permasalahan
  • Aturan yang harus dikerjakan pada situasi yang terjadi
  • Strategi global untuk menyelesaikan berbagai jenis masalah
  • Meta-knowledge
  • Fakta-fakta

Karakteristik Sistem Pakar :

  • Memiliki kemampuan belajar atau memahami masalah dari pengalaman.
  • Memberikan tanggapan yang cepat dan memuaskan terhadap situasi baru.

  • Mampu menangani masalah yang kompleks (semi terstruktur).
  • Memecahkan masalah dengan penalaran.
    • Menggunakan pengetahuan untuk menyelasaikan masalah.

Ciri - ciri Sistem Pakar:

  • Memiliki informasi yang handal.
  • Mudah dimodifikasi.
  • Heuristik dalam menggunakan pengetahuan (yang sering kali tidak
    sempurna) untuk mendapatkan penyelesaiannya.
  • Dapat digunakan dalam berbagai jenis komputer.
  • Memiliki kemampuan untuk beradaptasi.

Konsep dasar sistem pakar mencakup beberapa persoalan mendasar, antara lain siapa yang disebut pakar, apa yang dimaksud dengan keahlian, bagaimana keahlian dapat ditransfer, dan bagaimana sistem bekerja.

Pakar adalah orang yang memiliki pengetahuan, penilaian, pengalaman, metode khusus, serta kemampuan untuk menerapkan bakat dalam memberi nasihat dan memecahkan masalah. Pakar biasa memiliki beberapa konsep umum. Pertama, harus mampu memecahkan persoalan dan mencapai tingkat performa yang secara signifikan lebih baik dari orang kebanyakan. Kedua, pakar adalah relatif. Pakar pada satu waktu atau satu wilayah mungkin tidak menjadi pakar di waktu atau wilayah lain. Misalnya, mahasiswa kedokteran mungkin disebut pakar dalam penyakit dibanding petugas administrasi, tetapi bukan pakar di rumah sakit terkemuka.

Biasanya pakar manusia mampu melakukan hal berikut :   Mengenali dan merumuskan persoalan, Memecahkan persoalan dengan cepat dan tepat, Menjelaskan solusi tersebut, Belajar dari pengalaman, Menyusun ulang pengetahuan, Membagi-bagi aturan jika diperlukan, Menetapkan relevansi Keahlian adalah pengetahuan ekstensif yang spesifik terhadap tugas yang dimiliki pakar.

Pakar  manusia  memiliki  sistem  perbaikan-pengetahuan :  yakni  mereka  dapat  menganalisis  pengetahuannya  sendiri  dan  kegunaannya,  belajar  darinya,  dan  meningkatkannya  untuk  konsultasi  mendatang. Serupa pula, evaluasi tersebut diperlukan  dalam  pembelajaran  komputer  sehingga  program  dapat  menganalisis alasan keberhasilan atau kegagalannya. Hal ini dapat  mengarah  kepada  peningkatan  sehingga  menghasilkan  basis  pengetahuan  yang  lebih  akurat  dan  pertimbangan  yang  lebih  efektif.

Komponen  tersebut  tidak  tersedia  dalam  sistem  pakar  komersial pada  saat  ini, tetapi sedang dikembangkan dalam ES  eksperimental pada beberapa universitas dan lembaga riset. Sistem pakar (Expert System) adalah sebuah sistem informasi yang memiliki intelegensia buatan (Artificial Intelegent) yang menyerupai intelegensia manusia. Sistem pakar mirip dengan DSS yaitu bertujuan menyediakan dukungan pemecahan masalah tingkat tinggi untuk pemakai.

Perbedaan ES dan DSS adalah kemampuan ES untuk menjelaskan alur penalarannya dalam mencapai suatu pemecahan tertentu. Sangat sering terjadi penjelasan cara pemecahan masalah ternyata lebih berharga dari pemecahannya itu sendiri.

Keahlian sering dicapai dari pelatihan, membaca, dan mempraktikkan. Keahlian mencakup pengetahuan eksplisit, misalnya teori yang dipelajari dari buku teks atau kelas, dan pengetahuan implisit yang diperoleh dari pengalaman. Pengembangan sistem pakar dibagi menjadi dua generasi. Kebanyakan sistem pakar generasi pertama menggunakan aturan jika untuk merepresentasikan dan menyimpan pengetahuannya. Sistem pakar generasi kedua jauh lebih fleksibel dalam mengadopsi banyak representasi pengetahuan dan metode pertimbangan.

Pengalihan keahlian dari para ahli ke media elektronik seperti komputer untuk kemudian dialihkan lagi pada orang yang bukan ahli, merupakan tujuan utama dari sistem pakar. Proses ini membutuhkan 4 aktivitas yaitu: tambahan pengetahuan (dari para ahli atau sumber-sumber lainnya), representasi pengetahuan (ke komputer), inferensi pengetahuan, dan pengalihan pengetahuan ke user. Pengetahuan yang disimpan di komputer disebut sebagai basis pengetahuan, yaitu: fakta dan prosedur (biasanya berupa aturan).

Salah satu fitur yang harus dimiliki oleh sistem pakar adalah kemampuan untuk menalar. Jika keahlian-keahlian sudah tersimpan sebagai basis pengetahuan dan tersedia program yang mampu mengakses basis data, maka komputer harus dapat diprogram untuk membuat inferensi. Proses inferensi ini dikemas dalam bentuk motor inferensi (inference engine). Dan setiap sub sistem mempunyai sifat dari sistem untuk menjalankan suatu fungsi sistem tertentu dan mempengaruhi proses sistem secara keseluruhan.

Terdapat beberapa alasan bagi suatu perusahaan untuk mengadopsi sistem pakar. Pertama, pakar di suatu perusahaan/instansi bisa pensiun, keluar, atau telah meninggal. Kedua, pengetahuan perlu didokumentasikan atau dianalisis. Ketiga, pendidikan dan pelatihan adalah hal penting tetapi merupakan tugas yang sulit. Sistem pakar memungkinkan pengetahuan ditransfer lebih mudah dengan biaya lebih rendah.

Fasilitas penjelasan sistem merupakan komponen tambahan  dari  sistem  pakar  yang  berfungsi  untuk  memberikan  penjelasan  kepada  user  mengapa  suatu  pertanyaan  ditanyakan  oleh  sistem  pakar,  bagaimana  kesimpulan  dapat  diperoleh,  kenapa  solusi  tertentu ditolak, dan apa rencananya untuk mencapai solusi.

Inferensi merupakan suatu proses untuk menghasilkan informasi  dari  fakta  yang  diketahui.  Inferensi  adalah  solusi  logis  atau  implikasi berdasarkan informasi yang tersedia. Dalam sistem pakar,  proses inferensi dilakukan dalam suatu modul yang disebut inference  engine. Ketika representasi pengetahaun pada bagian knowledge base  telah lengkap, atau paling tidak telah berada pada level yang cukup  akurat, maka representasi pengetahuan tersebut telah siap digunakan.

Inference  engine  merupakan  modul  yang  berisi  program  tentang  bagaimana mengendalikan proses reasoning.  Ada dua metode inferensi yang penting dalam sistem pakar,  yaitu  runut  maju  (forward  chaining)  dan  runut  balik  (backward  chaining).

Otak”  ES  adalah  mesin  inferensi,  yang  dikenal  juga  sebagai  struktur  kontrol  atau  penerjemah  aturan  (dalam  ES  berbasis-aturan).  Komponen  ini  sebenarnya  adalah  program  komputer  yang  menyediakan  metodologi  untuk  mempertimbangkan informasi dalam pengetahuan dan workplace,  dan merumuskan kesimpulan.

Mesin inferensi  adalah keahlian yang  dibutuhkan  disimpan  di  dalam  knowledge  base  (basis  pengetahuan), komputer diprogram sehingga dapat menghasilkan  solusi.

Terdapat  dua  cara  (metode)  mekanisme  inferensi  dalam  sistem pakar berbasis aturan, yaitu:

Inferencing dengan Rule : Forward dan Backward Chaining

Inferensi dengan rules merupakan implementasi dari modus ponen, yang direfleksikan dalam mekanisme search (pencarian). Dapat pula mengecek semua rule pada knowledge base dalam arah forward maupun backward. Proses pencarian berlanjut sampai tidak ada rule yang dapat digunakan atau sampai sebuah tujuan (goal) tercapai. Ada dua metode inferencing dengan rules, yaitu forward chaining atau data-driven dan backward chaining atau goal-driven.

Runut maju (forward chaining)   Runut maju adalah aturan-aturan diuji satu demi satu dalam  urutan tertentu (data driven). Forward chaining merupakan grup dari multiple inferensi yang melakukan pencarian dari suatu masalah kepada solusinya. Jika klausa premis sesuai dengan situasi (bernilai TRUE), maka proses akan meng-assert solusi. Forward chaining adalah data-driven karena inferensi dimulai dengan informasi yang tersedia dan baru solusi diperoleh. Jika suatu aplikasi menghasilkan tree yang lebar dan tidak dalam, maka gunakan forward chaining.

Runut mundur ( backward chaining)  Runut mundur adalah penalaran dimulai dari kesimpulan dan  akan dibuktikan kebenarannya (goal driven). Menggunakan pendekatan goal-driven, dimulai dari ekspektasi apa yang diinginkan terjadi (hipotesis), kemudian mengecek pada sebab-sebab yang mendukung (ataupun kontradiktif) dari ekspektasi tersebut. Jika suatu aplikasi menghasilkan tree yang sempit dan cukup dalam, maka gunakan backward chaining.

Kedua  cara  di  atas  dipengaruhi  oleh  macam  penelusuran  yang terdiri dari 3 macam/ teknik penelusuran:

  • Depth  first  search,  teknik  penelusuran  dari  kode  ke  kode  bergerak menurun ke tingkat dalam yang berurutan.
  • Breadth  first  search,  teknik  penelusuran  pada  semua  kode  dalam satu level sebelum berpindah ke level di bawahnya.
  • Best  first  search,  kombinasi  antara  depth  first  search  dan  breadth first search.

Akuisisi Pengetahuan (Knowledge Acquisition)

Akuisisi  pengetahuan  adalah  pengumpulan  data-data  dari  seorang pakar ke dalam suatu sistem (program komputer). Bahan  pengetahuan dapat diperoleh melalui buku, jurnal ilmiah, literatur,  seorang pakar, browsing internet, laporan dan lain-lain. Sumber  pengetahuan  dari  buku,  jurnal  ilmiah,  literatur,  seorang  pakar,  browsing internet, laporan dijadikan dokumentasi untuk dipelajari,  diolah  dan  dikumpulkan  dengan  terstruktur  menjadi  basis  pengetahuan (knowledge base).

Sumber-sumber  pengetahuan  yang  diperoleh  agar  menghasilkan  data-data  yang  baik    maka  perlu  diolah  dengan  kemampuan yang baik pula sehingga dapat menghasilkan solusi  yang efisien. Karena kemampuan yang menjadi hal yang pokok/  wajib dibutuhkan oleh seorang pengembang sistem.  Mendapatkan  pengetahuan  dari  pakar  adalah  tugas  kompleks yang sering menimbulkan kemacetan dalam konstruksi ES.  Dalam  membangun  sistem  besar,  seseorang  memerlukan  knowledge  engineer  atau  pakar  elisitasi  pengetahuan  untuk  berinteraksi  dengan  satu  atau  lebih  pakar  manusia  dalam  membangun  basis  pengetahuan.

Biasanya  knowledge  engineer membantu  pakar  menyusun  area  persoalan  dengan  menginterpretasikan  dan  mengintegrasikan  jawaban  manusia,  menyusun  analogi,  mengajukan  contoh  pembanding,  dan  menjelaskan kesulitan konseptual.

Struktur Sistem Pakar

Sistem pakar disusun oleh dua bagian utama, yaitu lingkungan pengembangan (development environment) dan lingkungan konsultasi (consultation  environment)  (Turban,  1995).  Lingkungan pengembangan  sistem  pakar  digunakan  untuk  memasukkan pengetahuan  pakar  ke  dalam  lingkungan  sistem  pakar,  sedangkan lingkungan konsultasi digunakan oleh pengguna yang bukan pakar guna memperoleh pengetahuan pakar.

Tiga  komponen  utama  yang  tampak  secara  virtual  disetiap sistem  pakar  adalah  basis  pengetahuanmesin  inferensi,  dan antar muka pemakai.

  1. 1. Basis Pengetahuan (Knowledge Base)

Basis pengetahuan merupakan inti dari suatu sistem pakar, yaitu berupa representasi pengetahuan dari pakar. Basis pengetahuan tersusun atas fakta dan kaidah. Fakta adalah informasi tentang objek, peristiwa, atau situasi. Kaidah adalah cara untuk membangkitkan suatu fakta baru dari fakta yang sudah diketahui. Basis tersebut mencakup dua elemen dasar :

  • Fakta,  misalnya  situasi  persoalan  dan  teori  area  persoalan,  dan
  • Heuristik atau  aturan  khusus  yang  mengarahkan  penggunaan pengetahuan untuk memecahkan persoalan khusus dalam domain  tertentu.

Selain itu, mesin inferensi dapat menyertakan pemecahan  persoalan untuk tujuan umum dan aturan pengambilan keputusan ).  Heuristik menyatakan pengetahuan peniliaian informal dalam area  aplikasi.  Pengetahuan,  tidak  hanya  fakta,  adalah  bahan  mentah  primer dalam sistem pakar.

  1. 2. Mesin Inferensi (Inference Engine)

Mesin inferensi berperan sebagai otak dari sistem pakar. Mesin inferensi berfungsi untuk memandu proses penalaran terhadap suatu kondisi, berdasarkan pada basis pengetahuan yang tersedia. Di dalam mesin inferensi terjadi proses untuk memanipulasi dan mengarahkan kaidah, model, dan fakta yang disimpan dalam basis pengetahuan dalam rangka mencapai solusi atau kesimpulan.

Dalam prosesnya, mesin inferensi menggunakan strategi penalaran dan strategi pengendalian. Strategi penalaran terdiri dari strategi penalaran pasti (Exact Reasoning) dan strategi penalaran tak pasti (Inexact Reasoning). Exact reasoning akan dilakukan jika semua data yang dibutuhkan untuk menarik suatu kesimpulan tersedia, sedangkan inexact reasoning dilakukan pada keadaan sebaliknya.Strategi pengendalian berfungsi sebagai panduan arah dalam melakukan proses penalaran. Terdapat tiga tehnik pengendalian yang sering digunakan, yaitu forward chaining, backward chaining, dan gabungan dari kedua teknik pengendalian tersebut.

  1. 3. Basis Data (Data Base)

Basis data terdiri atas semua fakta yang diperlukan, dimana fakta-fakta tersebut digunakan untuk memenuhi kondisi dari kaidah-kaidah dalam sistem. Basis data menyimpan semua fakta, baik fakta awal pada saat sistem mulai beroperasi, maupun fakta-fakta yang diperoleh pada saat proses penarikan kesimpulan sedang dilaksanakan. Basis data digunakan untuk menyimpan data hasil observasi dan data lain yang dibutuhkan selama pemrosesan.

  1. 4. Antarmuka Pemakai (User Interface)

User Interface, adalah bagian yang memungkinkan manajer mamasukan instruksi dan informasi kedalam dan menerima informasi dari sistem pakar.

Fasilitas ini digunakan sebagai mekanisme komunikasi antara pengguna (user) dengan sistem. Antarmuka pemakai (User Interface) dapat menerima informasi dari pengguna (user) dan memberikan informasi kepada pengguna (user) untuk membantu mengarahkan alur penelusuran masalah sampai ditemukan suatu solusi.

User interface, berfungsi untuk menginputkan pengetahuan baru ke dalam basis pengetahuan sistem pakar (ES), menampilkan penjelasan sistem dan memberikan panduan pemakaian sistem secara menyeluruh step by step sehingga user mengerti apa yang akan dilakukan terhadap suatu sistem. Yang terpenting dalam membangun user interface adalah kemudahan dalam memakai/ menjalankan sistem, interaktif, komunikatif, sedangkan kesulitan dalam mengembangkan/ membangun suatu program jangan terlalu diperlihatkan.

Teknik Representasi Pengetahuan

Representasi pengetahuan adalah suatu teknik untuk merepresentasikan basis pengetahuan yang diperoleh ke dalam suatu skema/diagram tertentu sehingga dapat diketahui relasi/keterhubungan antara suatu data dengan data yang lain. Teknik ini membantu knowledge engineer dalam memahami struktur pengetahuan yang akan dibuat sistem pakarnya. Terdapat beberapa teknik representasi pengetahuan yang biasa digunakan dalam pengembangan suatu sistem pakar, yaitu

  1. a. Rule-Based Knowledge

Pengetahuan direpresentasikan dalam suatu bentuk fakta (facts) dan aturan (rules). Bentuk representasi ini terdiri atas premise dan kesimpulan.

  1. b. Frame-Based Knowledge

Pengetahuan direpresentasikan dalam suatu bentuk hirarki atau jaringan frame.

c.   Object-Based Knowledge

Pengetahuan direpresentasikan sebagai jaringan dari obyek-obyek. Obyek adalah elemen data yang terdiri dari data dan metoda (proses).

  1. d. Case-Base Reasoning

Pengetahuan direpresentasikan dalam bentuk kesimpulan kasus (cases).

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d blogger menyukai ini: